What makes the Mediterranean Diet so healthy? What exactly makes superfoods super? The answer — at least in part — is polyphenols.
What are polyphenols?
Polyphenols are healthful compounds found in plant foods such as fruits, vegetables, whole grains, nuts, legumes, red wine, and extra virgin olive oil.
They’re a diverse bunch. Polyphenols form the largest family of phyto-nutrients found in nature, with more than 8,000 separate compounds. This huge family has many different sub-groups: flavanals, flavonols, anthocyanins, anthocyanidins, flavones, isoflavones and chalcones are all part of the clan.

How do they work at such a low dosage?
Not only do we take in relatively small amounts of polyphenols, we don’t even absorb much of those we eat. Surprisingly, only 10% of polyphenols are absorbed in the small intestine. The mystery is: How do they convey so many great health benefits at such low doses? The answer lies in the magic of the gut (specifically, your gut architecture and lumen environment, which is the “inner sanctum” of your gut). Ninety to 95% of the polyphenols you eat travel to your large intestine, where they’re digested. But not by you — by your gut microbiota.
Inside your large intestine, microbes ferment the polyphenols and break them down into smaller bits that are easier for your colon wall to absorb. Then your body takes it from there, distributing these tiny-but-powerful compounds to distant sites throughout your body.

Microbiota Task #2: Immune Support
We are only now starting to discover all the amazing ways that polyphenols can support healthy gut architecture and function. While you’re carrying on with your life, here’s what they’re up to:
- Regulating important immune markers to help keep you well
- Providing a nutrient source for bacteria to increase the numbers of good guys in your gut while decreasing the bad
- Improving the efficacy of probiotics
- Acting against harmful bacteria to boost immunity
- Activating your master metabolic switch called AMPK, which regulates how your cells process energy and can help improve metabolism.
- Providing powerful antioxidant capacity to protect your core gut architecture
- Reinforcing your gut barrier that keeps bacteria, toxins and food particles inside of your gut and outside of your bloodstream
- Increasing the protective layer of mucus on the surface of your gut to keep your gut healthy
- Helping ferment fiber to make it more bioavailable, and possibly reducing negative side effects from consuming fiber
- Stimulating the production of beneficial compounds made by your gut bacteria called short-chain fatty acids (SCFAs)
Previlli™ is the only gut health product that provides a polyphenol buffet to support all of these critical gut functions.

References
Links To Our References
- Anhe, F. F., Nachbar, R. T., Varin, T. V., Trottier, J., Dudonne, S., Le Barz, M., Feutry, P., Pilon, G., Barbier, O., Desjardins, Y., Roy, D., & Marette, A. (2018, Jul 31). Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut. https://doi.org/10.1136/gutjnl-2017-315565
- Anhe, F. F., Pilon, G., Roy, D., Desjardins, Y., Levy, E., & Marette, A. (2016). Triggering Akkermansia with dietary polyphenols: A new weapon to combat the metabolic syndrome? Gut Microbes, 7(2), 146-153. https://doi.org/10.1080/19490976.2016.1142036
- Anhe, F. F., Varin, T. V., Le Barz, M., Desjardins, Y., Levy, E., Roy, D., & Marette, A. (2015, Dec). Gut Microbiota Dysbiosis in Obesity-Linked Metabolic Diseases and Prebiotic Potential of Polyphenol-Rich Extracts. Curr Obes Rep, 4(4), 389-400. https://doi.org/10.1007/s13679-015-0172-9
- Aprikian, O., Duclos, V., Guyot, S., Besson, C., Manach, C., Bernalier, A., Morand, C., Remesy, C., & Demigne, C. (2003, Jun). Apple pectin and a polyphenol-rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats. J Nutr, 133(6), 1860-1865. https://doi.org/10.1093/jn/133.6.1860
- Baldwin, J., Collins, B., Wolf, P. G., Martinez, K., Shen, W., Chuang, C. C., Zhong, W., Cooney, P., Cockrell, C., Chang, E., Gaskins, H. R., & McIntosh, M. K. (2016, Jan). Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice. J Nutr Biochem, 27, 123-135. https://doi.org/10.1016/j.jnutbio.2015.08.027
- Barrett, A. H., Farhadi, N. F., & Smith, T. J. (2018). Slowing starch digestion and inhibiting digestive enzyme activity using plant flavanols/tannins— A review of efficacy and mechanisms. LWT, 87, 394-399. https://doi.org/https://doi.org/10.1016/j.lwt.2017.09.002
- Bialonska, D., Kasimsetty, S. G., Schrader, K. K., & Ferreira, D. (2009, Sep 23). The effect of pomegranate (Punica granatum L.) byproducts and ellagitannins on the growth of human gut bacteria. J Agric Food Chem, 57(18), 8344-8349. https://doi.org/10.1021/jf901931b
- Bialonska, D., Ramnani, P., Kasimsetty, S. G., Muntha, K. R., Gibson, G. R., & Ferreira, D. (2010, Jun 15). The influence of pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. Int J Food Microbiol, 140(2-3), 175-182. https://doi.org/10.1016/j.ijfoodmicro.2010.03.038
- Bustos, I., Garcia-Cayuela, T., Hernandez-Ledesma, B., Pelaez, C., Requena, T., & Martinez-Cuesta, M. C. (2012, Sep 12). Effect of flavan-3-ols on the adhesion of potential probiotic lactobacilli to intestinal cells. J Agric Food Chem, 60(36), 9082-9088. https://doi.org/10.1021/jf301133g
- Cani, P. D., & de Vos, W. M. (2017). Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Front Microbiol, 8, 1765. https://doi.org/10.3389/fmicb.2017.01765
- Cardona, F., Andres-Lacueva, C., Tulipani, S., Tinahones, F. J., & Queipo-Ortuno, M. I. (2013, Aug). Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem, 24(8), 1415-1422. https://doi.org/10.1016/j.jnutbio.2013.05.001
- Carvalho, A. C., Guedes, M. M., de Souza, A. L., Trevisan, M. T., Lima, A. F., Santos, F. A., & Rao, V. S. (2007, Oct). Gastroprotective effect of mangiferin, a xanthonoid from Mangifera indica, against gastric injury induced by ethanol and indomethacin in rodents. Planta Med, 73(13), 1372-1376. https://doi.org/10.1055/s-2007-990231
- Cassidy, A., & Minihane, A. M. (2017, Jan). The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr, 105(1), 10-22. https://doi.org/10.3945/ajcn.116.136051
- Cavalcante Morais, T., Cavalcante Lopes, S., Bezerra Carvalho, K. M., Rodrigues Arruda, B., Correia de Souza, F. T., Salles Trevisan, M. T., Rao, V. S., & Almeida Santos, F. (2012, Jul 7). Mangiferin, a natural xanthone, accelerates gastrointestinal transit in mice involving cholinergic mechanism. World J Gastroenterol, 18(25), 3207-3214. https://doi.org/10.3748/wjg.v18.i25.3207
- Celebioglu, H. U., & Svensson, B. (2018, Aug 21). Dietary Nutrients, Proteomes, and Adhesion of Probiotic Lactobacilli to Mucin and Host Epithelial Cells. Microorganisms, 6(3). https://doi.org/10.3390/microorganisms6030090
- Chiva-Blanch, G., & Badimon, L. (2017). Effects of Polyphenol Intake on Metabolic Syndrome: Current Evidences from Human Trials. Oxid Med Cell Longev, 2017, 5812401. https://doi.org/10.1155/2017/5812401
- Cong, Y., Wang, L., Konrad, A., Schoeb, T., & Elson, C. O. (2009, Nov). Curcumin induces the tolerogenic dendritic cell that promotes differentiation of intestine-protective regulatory T cells. Eur J Immunol, 39(11), 3134-3146. https://doi.org/10.1002/eji.200939052
- Cory, H., Passarelli, S., Szeto, J., Tamez, M., & Mattei, J. (2018). The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front Nutr, 5, 87. https://doi.org/10.3389/fnut.2018.00087
- Cremonini, E., Daveri, E., Mastaloudis, A., Adamo, A. M., Mills, D., Kalanetra, K., Hester, S. N., Wood, S. M., Fraga, C. G., & Oteiza, P. I. (2019, Sep). Anthocyanins protect the gastrointestinal tract from high fat diet-induced alterations in redox signaling, barrier integrity and dysbiosis. Redox Biol, 26, 101269. https://doi.org/10.1016/j.redox.2019.101269
- Cueva, C., Sanchez-Patan, F., Monagas, M., Walton, G. E., Gibson, G. R., Martin-Alvarez, P. J., Bartolome, B., & Moreno-Arribas, M. V. (2013, Mar). In vitro fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites. FEMS Microbiol Ecol, 83(3), 792-805. https://doi.org/10.1111/1574-6941.12037
- Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., Tognolini, M., Borges, G., & Crozier, A. (2013, May 10). Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal, 18(14), 1818-1892. https://doi.org/10.1089/ars.2012.4581
- Du, S., Liu, H., Lei, T., Xie, X., Wang, H., He, X., Tong, R., & Wang, Y. (2018, Dec). Mangiferin: An effective therapeutic agent against several disorders (Review). Mol Med Rep, 18(6), 4775-4786. https://doi.org/10.3892/mmr.2018.9529
- Duda-Chodak, A., Tarko, T., Satora, P., & Sroka, P. (2015, Apr). Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr, 54(3), 325-341. https://doi.org/10.1007/s00394-015-0852-y
- Edwards, C. A., Havlik, J., Cong, W., Mullen, W., Preston, T., Morrison, D. J., & Combet, E. (2017). Polyphenols and health: Interactions between fibre, plant polyphenols and the gut microbiota. In Nutr Bull (Vol. 42, pp. 356-360). https://doi.org/10.1111/nbu.12296
- Espin, J. C., Gonzalez-Sarrias, A., & Tomas-Barberan, F. A. (2017, Sep 1). The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem Pharmacol, 139, 82-93. https://doi.org/10.1016/j.bcp.2017.04.033
- Etxeberria, U., Arias, N., Boque, N., Macarulla, M. T., Portillo, M. P., Martinez, J. A., & Milagro, F. I. (2015, Jun). Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J Nutr Biochem, 26(6), 651-660. https://doi.org/10.1016/j.jnutbio.2015.01.002
- Etxeberria, U., Fernandez-Quintela, A., Milagro, F. I., Aguirre, L., Martinez, J. A., & Portillo, M. P. (2013, Oct 9). Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J Agric Food Chem, 61(40), 9517-9533. https://doi.org/10.1021/jf402506c
- Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., de Vos, W. M., & Cani, P. D. (2013, May 28). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A, 110(22), 9066-9071. https://doi.org/10.1073/pnas.1219451110
- Fan, J., Johnson, M. H., Lila, M. A., Yousef, G., & de Mejia, E. G. (2013). Berry and Citrus Phenolic Compounds Inhibit Dipeptidyl Peptidase IV: Implications in Diabetes Management. Evid Based Complement Alternat Med, 2013, 479505. https://doi.org/10.1155/2013/479505
- Feng, W., Wang, H., Zhang, P., Gao, C., Tao, J., Ge, Z., Zhu, D., & Bi, Y. (2017, Jul). Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats. Biochim Biophys Acta Gen Subj, 1861(7), 1801-1812. https://doi.org/10.1016/j.bbagen.2017.03.017
- Filosa, S., Di Meo, F., & Crispi, S. (2018, Dec). Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regen Res, 13(12), 2055-2059. https://doi.org/10.4103/1673-5374.241429
- Garcia, D., & Shaw, R. J. (2017, Jun 15). AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Mol Cell, 66(6), 789-800. https://doi.org/10.1016/j.molcel.2017.05.032
- Guo, X., Tresserra-Rimbau, A., Estruch, R., Martinez-Gonzalez, M. A., Medina-Remon, A., Fito, M., Corella, D., Salas-Salvado, J., Portillo, M. P., Moreno, J. J., Pi-Sunyer, X., & Lamuela-Raventos, R. M. (2017, May 3). Polyphenol Levels Are Inversely Correlated with Body Weight and Obesity in an Elderly Population after 5 Years of Follow Up (The Randomised PREDIMED Study). Nutrients, 9(5). https://doi.org/10.3390/nu9050452
- Herrera-Cazares, L. A., Hernandez-Navarro, F., Ramirez-Jimenez, A. K., Campos-Vega, R., Reyes-Vega, M. L., Loarca-Pina, G., Morales-Sanchez, E., Wall-Medrano, A., & Gaytan-Martinez, M. (2017, Nov 15). Mango-bagasse functional-confectionery: vehicle for enhancing bioaccessibility and permeability of phenolic compounds. Food Funct, 8(11), 3906-3916. https://doi.org/10.1039/c7fo00873b
- Hewlings, S. J., & Kalman, D. S. (2017, Oct 22). Curcumin: A Review of Its’ Effects on Human Health. Foods, 6(10). https://doi.org/10.3390/foods6100092
- Hidalgo, M., Oruna-Concha, M. J., Kolida, S., Walton, G. E., Kallithraka, S., Spencer, J. P., & de Pascual-Teresa, S. (2012, Apr 18). Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J Agric Food Chem, 60(15), 3882-3890. https://doi.org/10.1021/jf3002153
- Jakobek, L. (2015, May 15). Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem, 175, 556-567. https://doi.org/10.1016/j.foodchem.2014.12.013
- Janssens, P. L., Penders, J., Hursel, R., Budding, A. E., Savelkoul, P. H., & Westerterp-Plantenga, M. S. (2016). Long-Term Green Tea Supplementation Does Not Change the Human Gut Microbiota. PLoS One, 11(4), e0153134. https://doi.org/10.1371/journal.pone.0153134
- Jiao, X., Wang, Y., Lin, Y., Lang, Y., Li, E., Zhang, X., Zhang, Q., Feng, Y., Meng, X., & Li, B. (2019, Feb). Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6 J mice by modulating the gut microbiota. J Nutr Biochem, 64, 88-100. https://doi.org/10.1016/j.jnutbio.2018.07.008
- Kailasapathy, K., & Chin, J. (2000, Feb). Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol, 78(1), 80-88. https://doi.org/10.1046/j.1440-1711.2000.00886.x
- Kawabata, K., Kato, Y., Sakano, T., Baba, N., Hagiwara, K., Tamura, A., Baba, S., Natsume, M., & Ohigashi, H. (2015). Effects of phytochemicals on in vitro anti-inflammatory activity of Bifidobacterium adolescentis. Biosci Biotechnol Biochem, 79(5), 799-807. https://doi.org/10.1080/09168451.2015.1006566
- Kawabata, K., Yoshioka, Y., & Terao, J. (2019, Jan 21). Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules, 24(2). https://doi.org/10.3390/molecules24020370
- Li, Z., Henning, S. M., Lee, R. P., Lu, Q. Y., Summanen, P. H., Thames, G., Corbett, K., Downes, J., Tseng, C. H., Finegold, S. M., & Heber, D. (2015, Aug). Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers. Food Funct, 6(8), 2487-2495. https://doi.org/10.1039/c5fo00669d
- Liu, D., Zhang, Y., Liu, Y., Hou, L., Li, S., Tian, H., & Zhao, T. (2018, Sep). Berberine Modulates Gut Microbiota and Reduces Insulin Resistance via the TLR4 Signaling Pathway. Exp Clin Endocrinol Diabetes, 126(8), 513-520. https://doi.org/10.1055/s-0043-125066
- Lopresti, A. L. (2018, Jan 1). The Problem of Curcumin and Its Bioavailability: Could Its Gastrointestinal Influence Contribute to Its Overall Health-Enhancing Effects? Adv Nutr, 9(1), 41-50. https://doi.org/10.1093/advances/nmx011
- Luca, S. V., Macovei, I., Bujor, A., Miron, A., Skalicka-Wozniak, K., Aprotosoaie, A. C., & Trifan, A. (2020). Bioactivity of dietary polyphenols: The role of metabolites. Crit Rev Food Sci Nutr, 60(4), 626-659. https://doi.org/10.1080/10408398.2018.1546669
- Marin, L., Miguelez, E. M., Villar, C. J., & Lombo, F. (2015). Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int, 2015, 905215. https://doi.org/10.1155/2015/905215
- Martin-Pelaez, S., Camps-Bossacoma, M., Massot-Cladera, M., Rigo-Adrover, M., Franch, A., Perez-Cano, F. J., & Castell, M. (2017, Oct). Effect of cocoa’s theobromine on intestinal microbiota of rats. Mol Nutr Food Res, 61(10). https://doi.org/10.1002/mnfr.201700238
- Masumoto, S., Terao, A., Yamamoto, Y., Mukai, T., Miura, T., & Shoji, T. (2016, Aug 10). Non-absorbable apple procyanidins prevent obesity associated with gut microbial and metabolomic changes. Sci Rep, 6, 31208. https://doi.org/10.1038/srep31208
- Matkowski, A., Kus, P., Goralska, E., & Wozniak, D. (2013, Mar). Mangiferin – a bioactive xanthonoid, not only from mango and not just antioxidant. Mini Rev Med Chem, 13(3), 439-455.
- Neveu, V., Perez-Jimenez, J., Vos, F., Crespy, V., du Chaffaut, L., Mennen, L., Knox, C., Eisner, R., Cruz, J., Wishart, D., & Scalbert, A. (2010). Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford), 2010, bap024. https://doi.org/10.1093/database/bap024
- Ozdal, T., Sela, D. A., Xiao, J., Boyacioglu, D., Chen, F., & Capanoglu, E. (2016, Feb 6). The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients, 8(2), 78. https://doi.org/10.3390/nu8020078
- Peterson, C. T., Vaughn, A. R., Sharma, V., Chopra, D., Mills, P. J., Peterson, S. N., & Sivamani, R. K. (2018, Jan-Dec). Effects of Turmeric and Curcumin Dietary Supplementation on Human Gut Microbiota: A Double-Blind, Randomized, Placebo-Controlled Pilot Study. J Evid Based Integr Med, 23, 2515690×18790725. https://doi.org/10.1177/2515690×18790725
- Pierre, J. F., Heneghan, A. F., Feliciano, R. P., Shanmuganayagam, D., Roenneburg, D. A., Krueger, C. G., Reed, J. D., & Kudsk, K. A. (2013, May-Jun). Cranberry proanthocyanidins improve the gut mucous layer morphology and function in mice receiving elemental enteral nutrition. JPEN J Parenter Enteral Nutr, 37(3), 401-409. https://doi.org/10.1177/0148607112463076
- Plovier, H., & Cani, P. D. (2017, Jun). Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders? Microbiol Spectr, 5(3). https://doi.org/10.1128/microbiolspec.BAD-0002-2016
- Puupponen-Pimia, R., Nohynek, L., Hartmann-Schmidlin, S., Kahkonen, M., Heinonen, M., Maatta-Riihinen, K., & Oksman-Caldentey, K. M. (2005). Berry phenolics selectively inhibit the growth of intestinal pathogens. J Appl Microbiol, 98(4), 991-1000. https://doi.org/10.1111/j.1365-2672.2005.02547.x
- Renard, C. M. G. C., Watrelot, A. A., & Le Bourvellec, C. (2017). Interactions between polyphenols and polysaccharides: Mechanisms and consequences in food processing and digestion. Trends in Food Science & Technology, 60, 43-51. https://doi.org/https://doi.org/10.1016/j.tifs.2016.10.022
- Roopchand, D. E., Carmody, R. N., Kuhn, P., Moskal, K., Rojas-Silva, P., Turnbaugh, P. J., & Raskin, I. (2015, Aug). Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet-Induced Metabolic Syndrome. Diabetes, 64(8), 2847-2858. https://doi.org/10.2337/db14-1916
- Russell, W., & Duthie, G. (2011, Aug). Plant secondary metabolites and gut health: the case for phenolic acids. Proc Nutr Soc, 70(3), 389-396. https://doi.org/10.1017/s0029665111000152
- Sadeghi Ekbatan, S., Sleno, L., Sabally, K., Khairallah, J., Azadi, B., Rodes, L., Prakash, S., Donnelly, D. J., & Kubow, S. (2016, Aug 1). Biotransformation of polyphenols in a dynamic multistage gastrointestinal model. Food Chem, 204, 453-462. https://doi.org/10.1016/j.foodchem.2016.02.140
- Severi, J. A., Lima, Z. P., Kushima, H., Brito, A. R., Santos, L. C., Vilegas, W., & Hiruma-Lima, C. A. (2009, Mar 10). Polyphenols with antiulcerogenic action from aqueous decoction of mango leaves (Mangifera indica L.). Molecules, 14(3), 1098-1110. https://doi.org/10.3390/molecules14031098
- Shen, L., Liu, L., & Ji, H. F. (2017). Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food Nutr Res, 61(1), 1361780. https://doi.org/10.1080/16546628.2017.1361780
- Singh, A., Holvoet, S., & Mercenier, A. (2011, Oct). Dietary polyphenols in the prevention and treatment of allergic diseases. Clin Exp Allergy, 41(10), 1346-1359. https://doi.org/10.1111/j.1365-2222.2011.03773.x
- Stohs, S., A, S., Moriyama, H., Bagchi, M., T, A., & Bagchi, D. (2018). A Review on Antioxidant, Anti-Inflammatory and Gastroprotective Abilities of Mango (Magnifera indica) Leaf Extract and Mangiferin. Journal of Nutrition and Health Sciences, 5. https://doi.org/10.15744/2393-9060.5.303
- Sukumar, M. R., & Konig, B. (2018). Pomegranate extract specifically inhibits Clostridium difficile growth and toxin production without disturbing the beneficial bacteria in vitro. Infect Drug Resist, 11, 2357-2362. https://doi.org/10.2147/idr.s163484
- Taguri, T., Tanaka, T., & Kouno, I. (2004, Dec). Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol Pharm Bull, 27(12), 1965-1969. https://doi.org/10.1248/bpb.27.1965
- Tresserra-Rimbau, A., Rimm, E. B., Medina-Remon, A., Martinez-Gonzalez, M. A., de la Torre, R., Corella, D., Salas-Salvado, J., Gomez-Gracia, E., Lapetra, J., Aros, F., Fiol, M., Ros, E., Serra-Majem, L., Pinto, X., Saez, G. T., Basora, J., Sorli, J. V., Martinez, J. A., Vinyoles, E., Ruiz-Gutierrez, V., Estruch, R., & Lamuela-Raventos, R. M. (2014, Jun). Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr Metab Cardiovasc Dis, 24(6), 639-647. https://doi.org/10.1016/j.numecd.2013.12.014
- Tsao, R. (2010, Dec). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231-1246. https://doi.org/10.3390/nu2121231
- Tuohy, K. M., Conterno, L., Gasperotti, M., & Viola, R. (2012, Sep 12). Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J Agric Food Chem, 60(36), 8776-8782. https://doi.org/10.1021/jf2053959
- Tzounis, X., Vulevic, J., Kuhnle, G. G., George, T., Leonczak, J., Gibson, G. R., Kwik-Uribe, C., & Spencer, J. P. (2008, Apr). Flavanol monomer-induced changes to the human faecal microflora. Br J Nutr, 99(4), 782-792. https://doi.org/10.1017/s0007114507853384
- Van Hul, M., & Cani, P. D. (2019, Dec). Targeting Carbohydrates and Polyphenols for a Healthy Microbiome and Healthy Weight. Curr Nutr Rep, 8(4), 307-316. https://doi.org/10.1007/s13668-019-00281-5
- Wang, J., Ghosh, S. S., & Ghosh, S. (2017, Apr 1). Curcumin improves intestinal barrier function: modulation of intracellular signaling, and organization of tight junctions. Am J Physiol Cell Physiol, 312(4), C438-c445. https://doi.org/10.1152/ajpcell.00235.2016
- Wang, S., Moustaid-Moussa, N., Chen, L., Mo, H., Shastri, A., Su, R., Bapat, P., Kwun, I., & Shen, C. L. (2014, Jan). Novel insights of dietary polyphenols and obesity. J Nutr Biochem, 25(1), 1-18. https://doi.org/10.1016/j.jnutbio.2013.09.001
- Williamson, G., & Holst, B. (2008, Jun). Dietary reference intake (DRI) value for dietary polyphenols: are we heading in the right direction? Br J Nutr, 99 Suppl 3, S55-58. https://doi.org/10.1017/s0007114508006867
- Xiao, J. B., & Hogger, P. (2015). Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr Med Chem, 22(1), 23-38. https://doi.org/10.2174/0929867321666140706130807
- Yamagata, K., Tagami, M., & Yamori, Y. (2015, Jan). Dietary polyphenols regulate endothelial function and prevent cardiovascular disease. Nutrition, 31(1), 28-37. https://doi.org/10.1016/j.nut.2014.04.011
- Zhang, Q. J., & Yue, L. (2017). INHIBITORY ACTIVITY OF MANGIFERIN ON HELICOBACTER PYLORI-INDUCED INFLAMMATION IN HUMAN GASTRIC CARCINOMA AGS CELLS. Afr J Tradit Complement Altern Med, 14(1), 263-271. https://doi.org/10.21010/ajtcam.v14i1.28
- Zhang, X., Yang, Y., Wu, Z., & Weng, P. (2016, Mar 30). The Modulatory Effect of Anthocyanins from Purple Sweet Potato on Human Intestinal Microbiota in Vitro. J Agric Food Chem, 64(12), 2582-2590. https://doi.org/10.1021/acs.jafc.6b00586
- Zhang, X., Zhao, Y., Zhang, M., Pang, X., Xu, J., Kang, C., Li, M., Zhang, C., Zhang, Z., Zhang, Y., Li, X., Ning, G., & Zhao, L. (2012). Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One, 7(8), e42529. https://doi.org/10.1371/journal.pone.0042529